
Mike Ahmadi

What cybersecurity and robustness testing tool
manufactures should be building towards.

Integrated Analysis and Reporting In
Multiple Tools

© 2015 Synopsys, Inc. 2

Agenda

Who should be testing and why

What tools do today

What tools should be moving towards

The challenges

If I had a wish

© 2015 Synopsys, Inc. 3

Who Should Be Testing and Why
Why: Because
all stakeholders
are affected by

failures in
cybersecurity

(but in different
ways).

However, not all
links in the chain are

as well-suited to
perform testing.

At some point
someone (usually
the end user) has

to trust but
verify.

Who: All
Stakeholders In

The Supply
Chain

© 2015 Synopsys, Inc. 4

We Are The Vendor. Trust Us Or Else!

•  CSO of a large software company
recently posted a blog admonishing
organizations that analyze their
code or hire others to do so.

•  This did not bode well with the
security world.

•  Fortunately, the company took
down the blog post and stated that
the sentiments expressed in the
blog did not represent the
organization’s sentiment.

© 2015 Synopsys, Inc. 5

A Stopped Clock Is Right Twice A Day

• Despite the ranting tone of the
posting, some important points
were made.

• To Paraphrase: Finding a lot of
vulnerabilities is far less useful
than finding ways to
–  determine risks
–  create prioritized action plans.

© 2015 Synopsys, Inc. 6

The Risk Management Game

•  “One CISO told me that he performs risk
assessment backwards. He says that he
already knows what he needs to do for the next
five years to develop adequate security. So he
creates some risk numbers that support his
contention. Then he works backwards to create
types of loss incidents, frequencies, and
impacts that produce those numbers. He then
refines the input and output to make it all seem
plausible. I suggested that his efforts are
unethical since his input data and calculations
are all fake.” – Donn Parker

• Determining how to capture the right inputs for
a risk calculation is a critical part of creating a
useful output.

© 2015 Synopsys, Inc. 7

Taking Action

• Software and applications have to ship.
That is the bottom line. We need
software to do things, regardless of the
risk.

• Organizations need to sign off on
security, and will do so regardless of of
the veracity of their information.

• True cyber assurance means having a
sign off process that enables
advancement in technologies and
ultimately product features, rather than
expending too many cycles reacting to
big security challenges.

© 2015 Synopsys, Inc. 8

Types of Automated Tools Testing

• Dynamic Runtime Analysis – Finds security issues during runtime,
which can be categorized as CWE’s
– Malformed input testing (fuzz testing, DoS testing) – Finds zero-days and

robustness issues through negative testing.
– Behavioral analysis – Finds exploitable weaknesses by analyzing how the

code behaves during “normal” runtime.
•  Software Composition Analysis – Finds known vulnerabilities and

categorizes them as CVE’s and via other means.
•  Static Code Analysis – Finds defects in source code and categorizes

them as Cyber Weakness Enumerators (CWE’s) and other means
• Known Malware Testing – Finds known malware (e.g. viruses and other

rogue code).

Generally speaking, all of these tests can be used to enumerate CVE’s
and CWE’s, which can be (and should be) further categorized into
prioritized lists.

And What They Find

© 2015 Synopsys, Inc. 9

Some Prioritized Lists To Consider

•  SANS CWE Top 25 – A list of the top 25 most commonly encountered Cyber
Weakness Enumerators (CWEs), found in
(https://www.sans.org/top25-software-errors/)

•  OWASP Top 10 Vulnerabilities – A list of the 10 Most Critical Web Application
Security Risks compiled by OWASP
(https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project)

•  Verizon Report Top 10 CVEs – List of the 10 most commonly encountered
Common Vulnerabilities and Exposures (CVEs) used in exploits
(http://news.verizonenterprise.com/2015/04/2015-data-breach-report-info/)

© 2015 Synopsys, Inc. 10

What Can’t Be Easily Automated

• What the “dark wizards” of the
world of security research find.

• Small numbers of researchers
that are the “special forces” of
the security world.

• Commonly referred to as
hackers.

© 2015 Synopsys, Inc. 11

What Malformed Input Testing Finds

• Essentially, ways to get a system or application to misbehave or fail
through misuse (intentional or otherwise).

• This can be as simple as a single bad packet.

• Once failure modes occur they can lead to ways to ways to take down
a system or introduce malware (or both).

© 2015 Synopsys, Inc. 12

What Behavioral Analysis Finds

•  Watches what code is doing while it is running.

•  Can be a useful way to eliminate false positives, as long as every possible state is
executed during analysis.

•  Can determine contextual risk of an exploit.

•  Works well with web services and traditional IT systems, more complex for embedded
systems and RTOS environments.

© 2015 Synopsys, Inc. 13

What Software Composition Analysis Finds

•  Looks at compiled code and
determines what third-party (or
proprietary) components it is
built from.

• Queries databases of known
vulnerabilities for identified
components and lists them out.
Finds CVEs.

• Controversial because all
identified vulnerabilities are not
necessarily exposed.

• Can automatically track
vulnerabilities in a software
package over time.

© 2015 Synopsys, Inc. 14

What Static Code Analysis Finds

•  Identifies defects in source code.

•  Identifies CWEs

•  Like software composition analysis, can be controversial because
identified defects can range from trivial (low or no real risk) to critical
(high risk).

© 2015 Synopsys, Inc. 15

What Known Malware Analysis Finds

• This is the new generation of
antivirus type tools with a lot of
additional capabilities and
features.

• Malware is created to exploit
vulnerabilities, or simply run
“uninvited” as privileged
applications in an environment
that allows such actions.

• Tools need to check for
existence of malware against a
known database. Some tools
use heuristics.

© 2015 Synopsys, Inc. 16

What Security Researchers Find

•  Some of what was previously mentioned

•  A lot that cannot be easily discovered with automated
tools:

– Physical ports and interfaces
– Undocumented and hidden services
– Hidden back doors and passwords
– Configuration errors
–  Failures in process

•  True experts are few and far between and very
expensive.

•  No real formal training exists

•  Tend to stop or ease up on testing once a big exploit
emerges or once a specific target is reached.

© 2015 Synopsys, Inc. 17

What To Do With All The Information

•  If a software component has a lot of
vulnerabilities, you can update to a
less buggy version.

• However, research inevitably
uncovers vulnerabilities in newer
versions.

• What is the latency period between
versions?

• How long until a new fix comes out?

• How often is the code scrutinized for
bugs?

© 2015 Synopsys, Inc. 18

Inference Through Multiple Data Points

• Knowing CVEs, CWEs, and defect density is more useful
than knowing only one of these.

• Knowing how often a codebase is maintained for defects
is more useful than a single scan result.

• Multiple data points draw a better picture.

© 2015 Synopsys, Inc. 19

An Ingredient List

Simply knowing software “ingredients” arms a user with an
enormous resource for determining risk.

© 2015 Synopsys, Inc. 20

Understanding Context

•  Let’s use Heartbleed as an
example:

– Scored a 5 CVSS score (not
considered critical)

– Yet, if found in a server
application, it is indeed very
critical.

– Not nearly as critical if found in a
client application.

© 2015 The MITRE Corporation. All rights reserved.

If Only Finding Weaknesses in
Software was as Easy as

 Weakness

 Weakness

 Weakness

 Weakness

Asset

Attack

Impact

Item

Item

Item

Attack

Attack

Function

Asset

Impact

Impact

Known
Threat
Actors

Attack
Patterns

(CAPECs)

Weaknesses &
Vulnerabilities
(CWEs/CVEs)

Counter
Measures
- Actions*

Technical
Impacts

Operational
Impacts

* “Counter Measures - Actions” include: architecture
choices; design choices; added security functions,
activities & processes; protection schemes; physical
decomposition choices; static & dynamic code
assessments; design reviews; dynamic testing; and
pen testing

System &
System Security

Engineering
Trades

Assurance About Mitigating the Attacks That
Can Impact Operations

1.  Modify data
2.  Read data
3.  DoS: unreliable execution
4.  DoS: resource consumption
5.  Execute unauthorized code

or commands
6.  Gain privileges / assume

identity
7.  Bypass protection

mechanism
8.  Hide activities

• 

• 

• 

• 

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.1525
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(04/2015)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

Cybersecurity information exchange Vulnerability/state
exchange

 Common weakness scoring system

Recommendation ITU-T X.1525

• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 

ITU-T X.1525
(Mar 2015)

Common Weakness Risk Analysis Framework (CWRAF)

•  Vignettes
•  Technical Impact Scorecard

10 – Execute unauthorized code or commands
 6 – Read data
 3 – DoS: unreliable execution
 2 – DoS: resource consumption

Which static analysis
tools, reviews, and Pen
Testing services find the
CWEs I care about?

Making Use of the Prioritized List of Weaknesses
to Identify Assessment Techniques

Most
Important

Weaknesses
(CWEs)

Code
Review

Static
Analysis
Tool A

Pen
Testing
Services

CWEs a capability
claims to cover

Static
Analysis
Tool B

CWE Support of SecurityPrism

SecurityPrism® supports Common Weakness Enumeration (CWE) version 2.6 that was
released in early 2014. For more detailed information of CWE, visit http://cwe.mitre.org/.

SecurityPrism® provides various CWE-related rules, and each rule is paired with corresponding CWE IDs. Most of the
tasks of SecurityPrism® can be performed by specifying CWE IDs. For instance, inspection result can be categorized by
specific CWE ID. SecurityPrism® also provides a pre-defined set, which is called ruleset, of rules listed in CWE/SANS
Top 25 for C/C++/Java languages. A user may analyze their source codes by using this set to detect serious
vulnerabilities that CWE defines quickly.

Table 1 lists CWE-related rules of SecurityPrism®. The mark 'O' denotes that the rule is supported for the
corresponding language.
CWE ID Rule Name C/C++ Java (JSP)

15 [SP] External Control of System or Configuration Setting O O

22 [SP] Path Traversal O O

23 [SP] Relative Path Traversal O O

36 [SP] Absolute Path Traversal O O

41 [SP] Improper Resolution of Path Equivalence O O

78 [SP] OS Command Injection O O

80 [SP] Cross-Site Scripting, XSS O O

89 [SP] SQL Injection O O

90 [SP] LDAP Injection O O

95 [SP] Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval
Injection')

O

99 [SP] Resource Injection O O

102 [SP] Struts: Duplicate Validation Forms O

103 [SP] Struts: Incomplete validate() Method Definition O

104 [SP] Struts: Form Bean Does Not Extend Validation Class O

105 [SP] Struts: Form Field Without Validator O

106 [SP] Struts: Plug-in Framework not in Use O

107 [SP] Struts: Unused Validation Form O

108 [SP] Struts: Unvalidated Action Form O

109 [SP] Struts: Validator Turned Off O

110 [SP] Struts: Validation for Missing Field in Input Form O

111 [SP] Direct Use of Unsafe JNI O

112 [SP] Missing XML Validation O

113 [SP] HTTP Response Splitting O

114 [SP] Process Control O O

117 [SP] Improper Output Neutralization for Logs O O

129 [SP] Array index out of bounds O

170 [SP] Improper Null Termination O

CWE Support of SecurityPrism http://www.gtonesoft.com/eng/main/ag/con_ag/sp_cwe.html

1 of 5 5/28/15, 12:26 PM

Objective-C coverage of CWE

CWE-120 S1079 "scanf()" and "fscanf()" format strings should specify a field width for

the "%s" string placeholder

S1081 Insecure functions "strcpy", "strcat" and "sprintf" should not be used

CWE-394 S935 Each exit path from a function should have appropriate return value

CWE-478 SwitchWithoutDefault "switch" statements should end with a "default" clause

CWE-481 AssignmentInSubExpression Assignments should not be made from within

sub-expressions

CWE-482 S905 All non-null statements shall either have at least one side-effect

however executed or cause control flow to change

CWE-483 S121 Control structures should always use curly braces

CWE-484 NonEmptyCaseWithoutBreak Switch cases should end with an unconditional

"break" statement

CWE-561 S1763 Jump statements should not be followed by other statements

CWE-628 S961 A function-like macro shall not be invoked without all of its arguments

S930 The number of arguments passed to a function shall match the

number of parameters

CWE-676 S1079 "scanf()" and "fscanf()" format strings should specify a field width for

the "%s" string placeholder

S1081 Insecure functions "strcpy", "strcat" and "sprintf" should not be used

CWE-682 S874 Bitwise operators should not be applied to signed operands

CWE-783 S864 Limited dependence should be placed on operator precedence rules in

expressions

http://dist.sonarsource.com/reports/coverage/cwe/objc_cwe_cov...

1 of 1 8/26/15, 5:36 PM

Java coverage of CWE

CWE-20 S2077 Values passed to SQL commands should be sanitized

CWE-78 S2076 Values passed to OS commands should be sanitized

CWE-88 S2076 Values passed to OS commands should be sanitized

CWE-89 S2077 Values passed to SQL commands should be sanitized

CWE-90 S2078 Values passed to LDAP queries should be sanitized

CWE-190 S2184 Math operands should be cast before assignment

CWE-259 S2068 Credentials should not be hard-coded

CWE-293 S2089 HTTP referers should not be relied on

CWE-310 S2245 Pseudorandom number generators (PRNGs) should not be used in

secure contexts

CWE-326 S2245 Pseudorandom number generators (PRNGs) should not be used in

secure contexts

S2278 DES (Data Encryption Standard) and DESede (3DES) should not be

used

CWE-327 S2070 SHA-1 and Message-Digest hash algorithms should not be used

S2257 Only standard cryptographic algorithms should be used

CWE-328 S2070 SHA-1 and Message-Digest hash algorithms should not be used

CWE-330 S2245 Pseudorandom number generators (PRNGs) should not be used in

secure contexts

http://dist.sonarsource.com/reports/coverage/squid_cwe_covera...

1 of 4 8/26/15, 5:35 PM

www.cenzic.com 866) 4-CENZIC (866-423-6942)

Cenzic CWE Brochure ctober 2009 1

Company Confidential

Cenzic®, Hailstorm® and ClickToSecure® are registered trademarks of Cenzic, Inc.

The Cenzic logo, Hailstorm Enterprise ARC, and GovShield are trademarks of Cenzic, Inc.

© 2009 Cenzic, Inc. All rights reserved.

 | (

| O

Cenzic Product Suite is CWE Compatible

Cenzic Hailstorm Enterprise ARC, Cenzic Hailstorm Professional and Cenzic ClickToSecure are

compatible with the CWE standard or Common Weakness Enumeration as maintained by Mitre

Corporation. Web security assessment results from the Hailstorm product suite are mapped to

the relevant CWE ID's providing users with additional information to classify and describe

common weaknesses found in Web applications.

For additional details on CWE, please visit: http://cwe.mitre.org/index.html

The following is a mapping between Cenzic’s SmartAttacks and CWE ID's:

Cenzic

SmartAttack
Name

CWE ID/s

1
Application

Exception
CWE-388: Error Handling

2
Application

Exception (WS)
CWE-388: Error Handling

3
Application Path

Disclosure
CWE-200: Information Leak (rough match)

4
Authentication

Bypass

CWE-89: Failure to Sanitize Data into SQL Queries (aka

'SQL Injection') (rough match)

5
Authorization

Boundary

CWE-285: Missing or Inconsistent Access Control, CWE-425:

Direct Request ('Forced Browsing')

6
Blind SQL

Injection

CWE-89: Failure to Sanitize Data into SQL Queries (aka

'SQL Injection')

7
Blind SQL

Injection (WS)

CWE-89: Failure to Sanitize Data into SQL Queries (aka

'SQL Injection')

8
Browse HTTP

from HTTPS List

CWE-200: Information Leak

9 Brute Force Login CWE-521: Weak Password Requirements

10 Buffer Overflow CWE-120: Unbounded Transfer ('Classic Buffer Overflow')

11
Buffer Overflow

(WS)
CWE-120: Unbounded Transfer ('Classic Buffer Overflow')

12
Check Basic Auth

over HTTP

CWE-200: Information Leak

13
Check HTTP

Methods

CWE-650: Trusting HTTP Permission Methods on the Server

Side

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

map currency; it simply doesn’t hav e enough information to refine to a detailed CWE level that CWE
changes would typically affect. The list of CWE identifiers was generated automatically using "make
show-cwes", so there is confidence that this list is correct. Please report CWE mapping problems as bugs if
you find any.

Flawfinder may fail to find a vulnerability, even if flawfinder covers one of these CWE weaknesses. That
said, flawfinder does find vulnerabilities listed by the CWEs it covers, and it will not report lines without
those vulnerabilities in many cases. Thus, as required for any tool intending to be CWE compatible,
flawfinder has a rate of false positives less than 100% and a rate of false negatives less than 100%.
Flawfinder almost always reports whenever it finds a match to a CWE security element (a signature/pattern
as defined in its database), though certain obscure constructs can cause it to fail (see BUGS below).

Flawfinder can report on the following CWEs (these are the CWEs that flawfinder covers; ‘‘*’’ marks those
in the CWE/SANS top 25 list):

• CWE-20: Improper Input Validation

• CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘‘Path Traversal’’)

• CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘‘OS Command Injec-
tion’’)*

• CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (a parent of
CWE-120*, so this is shown as CWE-119:CWE-120)

• CWE-120: Buffer Copy without Checking Size of Input (‘‘Classic Buffer Overflow’’)*

• CWE-126: Buffer Over-read

• CWE-134: Uncontrolled Format String*

• CWE-190: Integer Overflow or Wraparound*

• CWE-250: Execution with Unnecessary Privileges

• CWE-327: Use of a Broken or Risky Cryptographic Algorithm*

• CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization (‘‘Race Condi-
tion’’)

• CWE-377: Insecure Temporary File

• CWE-676: Use of Potentially Dangerous Function*

• CWE-732: Incorrect Permission Assignment for Critical Resource*

• CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer (child of CWE-120*, so
this is shown as CWE-120/CWE-785)

• CWE-807: Reliance on Untrusted Inputs in a Security Decision*

• CWE-829: Inclusion of Functionality from Untrusted Control Sphere*

You can select a specific subset of CWEs to report by using the ‘‘−−regex’’ (-e) option. This option accepts
a regular expression, so you can select multiple CWEs, e.g., ‘‘−−regex "CWE-120|CWE-126"’’. If you
select multiple CWEs with ‘‘|’’ on a command line you will typically need to quote the parameters (since an
unquoted ‘‘|’’ is the pipe symbol). Flawfinder is designed to meet the CWE-Searchable requirement.

If your goal is to report a subset of CWEs that are listed in a file, that can be achieved on a Unix-like sys-
tem using the ‘‘−−regex’’ aka ‘‘−e’’ option. The file must be in regular expression format. For example,
‘‘flawfinder -e $(cat file1)’’ would report only hits that matched the pattern in ‘‘file1’’. If file1 contained
‘‘CWE-120|CWE-126’’ it would only report hits matching those CWEs.

A list of all CWE security elements (the signatures/patterns that flawfinder looks for) can be found by using
the ‘‘−−listrules’’ option. Each line lists the signature token (typically a function name) that may lead to a
hit, the default risk level, and the default warning (which includes the default CWE identifier). For most
purposes this is also enough if you want to see what CWE security elements map to which CWEs, or the
reverse. For example, to see the most of the signatures (function names) that map to CWE-327, without

Flawfinder 3 Aug 2014 9

The Common Weakness Enumeration (CWE) initiative is focused on creating a common set of
software security vulnerability descriptions. Such a set allows clear communication between dif-
ferent parties with interests in computer security, including researchers, tool designers, and users.

The CWE set describes and categorizes hundreds of different weaknesses, each of which is detailed on
the CWE website. We refer to individual weaknesses in the set by their numerical CWE IDs.

CWE Coverage for CodeSonar®

CWE Coverage for CodeSonar®

The following table lists the CWE IDs and their corresponding CodeSonar checks, as well as a description of the
check itself. (Please note that some CodeSonar warning classes do not have corresponding CWE IDs)

CWE IDs Detected by CodeSonar:

CWE ID CodeSonar Mnemonic - C/C++ CodeSonar Mnemonic - Java

4 FB.BAD_PRACTICE.J2EE_STORE_OF_NON_SERIALIZABLE_OBJECT_
INTO_SESSION

14 BADFUNC.MEMSET

15 IO.TAINT.CONF

20 IO.TAINT.SIZE

22 IO.TAINT.FNAME

73 IO.TAINT.FNAME

78 IO.INJ.COMMAND

79 FB.SECURITY.XSS_REQUEST_PARAMETER_TO_JSP_WRITER

FB.SECURITY.XSS_REQUEST_PARAMETER_TO_SEND_ERROR

FB.SECURITY.XSS_REQUEST_PARAMETER_TO_SERVLET_WRITER

81 FB.SECURITY.XSS_REQUEST_PARAMETER_TO_SEND_ERROR

89 IO.INJ.SQL FB.SECURITY.SQL_NONCONSTANT_STRING_PASSED_TO_EXECUTE

FB.SECURITY.SQL_PREPARED_STATEMENT_GENERATED_FROM_
NONCONSTANT_STRING

90 IO.INJ.LDAP

99 IO.TAINT.ADDR

IO.TAINT.FNAME

111 PMD.Controversial.AvoidUsingNativeCode

113 FB.SECURITY.HRS_REQUEST_PARAMETER_TO_COOKIE

FB.SECURITY.HRS_REQUEST_PARAMETER_TO_HTTP_HEADER

114 IO.INJ.LIB

119 LANG.MEM.HRLOOP

MISC.NEGCHAR

120 BADFUNC.BO.GETOPT

BADFUNC.BO.GETPASS

BADFUNC.BO.GETS

CWE IDs mapped to Klocwork Java issue
types
From current

CWE IDs mapped to Klocwork Java issue types

See also Detected Java Issues.

CWE ID Klocwork Checker Code and Description
20 (http://cwe.mitre.org
/data/definitions/20.html)

SV.TAINT Tainted data
SV.TAINT_NATIVE Tainted data goes to native code

73 (http://cwe.mitre.org
/data/definitions/73.html)

SV.TMPFILE Temporary file path tampering
SV.PATH Path and file name injection
SV.PATH.INJ File injection

77 (http://cwe.mitre.org
/data/definitions/77.html)

SV.EXEC Process Injection
SV.EXEC.DIR Process Injection. Working Directory

79 (http://cwe.mitre.org
/data/definitions/79.html)

SV.XSS.DB Cross Site Scripting (Stored XSS)
SV.DATA.DB Data injection
SV.XSS.REF Cross Site Scripting (Reflected XSS)

80 (http://cwe.mitre.org
/data/definitions/80.html)

SV.XSS.DB Cross Site Scripting (Stored XSS)
SV.XSS.REF Cross Site Scripting (Reflected XSS)

89 (http://cwe.mitre.org
/data/definitions/89.html)

SV.SQL Sql Injection
SV.SQL.DBSOURCE Unchecked information from the
database is used in SQL statements
SV.DATA.DB Data injection

103 (http://cwe.mitre.org
/data/definitions/103.html)

SV.STRUTS.VALIDMET Struts Forms: validate method

105 (http://cwe.mitre.org
/data/definitions/105.html)

SV.STRUTS.NOTVALID Struts Forms: inconsistent validate

113 (http://cwe.mitre.org
/data/definitions/113.html)

SV.HTTP_SPLIT HTTP Response Splitting

117 (http://cwe.mitre.org
/data/definitions/117.html)

SV.LOG_FORGING Log Forging

129 (http://cwe.mitre.org
/data/definitions/129.html)

SV.DOS.ARRINDEX Tainted index used for array access

CWE IDs mapped to Klocwork Java issue types - current http://www.klocwork.com/products/documentation/curren...

1 of 4 2/26/11 10:35 AM

CWE IDs mapped to Klocwork C and C++
issue types/ja
From current

< CWE IDs mapped to Klocwork C and C++ issue types
CWE IDs mapped to Klocwork C and C++ issue types/ja

 Detected C and C++ Issues.

CWE ID

20
(http://cwe.mitre.org
/data/definitions
/20.html)

ABV.TAINTED
SV.TAINTED.GENERIC
SV.TAINTED.ALLOC_SIZE

SV.TAINTED.CALL.INDEX_ACCESS =

22
(http://cwe.mitre.org
/data/definitions
/22.html)

SV.CUDS.MISSING_ABSOLUTE_PATH

73
(http://cwe.mitre.org
/data/definitions
/73.html)

SV.CUDS.MISSING_ABSOLUTE_PATH

74
(http://cwe.mitre.org
/data/definitions
/74.html)

SV.TAINTED.INJECTION

77
(http://cwe.mitre.org
/data/definitions
/77.html)

SV.CODE_INJECTION.SHELL_EXEC

78
(http://cwe.mitre.org
/data/definitions
/78.html)

NNTS.TAINTED
- NULL
SV.TAINTED.INJECTION

88
(http://cwe.mitre.org

SV.TAINTED.INJECTION
NNTS.TAINTED

CWE IDs mapped to Klocwork C and C++ issue types/ja -... http://www.klocwork.com/products/documentation/curren...

1 of 7 2/26/11 10:34 AM

CWE/SANS TOP 25
Veracode CWE Support
Download (//www.veracode.com/sites/default/files/Resources/Datasheets
/supported-cwe-scans-datasheet.pdf) the list of CWEs Veracode tests for. This list
reflects the CWEs that Veracode tests for using automated static and dynamic
scanning. The Veracode platform may report flaws in other CWEs if the results of a
manual penetration test are included alongside the scan results. Where a flaw may be
mapped to several CWEs, Veracode generally reports the most general CWE that
describes that particular case (e.g. CWE 80 is preferred for cross-site scripting over its
child CWEs). This list is updated frequently.

VERAFIED Security Mark for the CWE/SANS TOP 25
The 2011 CWE/SANS Top 25 Most Dangerous Programming Errors (http://www.sans.org
/top25errors/) is a list of the most significant errors that can lead to serious software
vulnerabilities. The errors on this list occur frequently, are often easy to find, and easy to
exploit. They are dangerous because they will frequently allow attackers to completely
take over the software, steal data, or prevent the software from working at all.

Although the Veracode Platform detects hundreds of software security flaws, we
provide a razor focus on finding the problems that are “worth fixing”. The CWE/SANS
Top 25 is a list of flaws so prevalent and severe that no non-web applications should be
delivered to customers without some evidence that the software does not contain
these errors.

The following table identifies technical flaws found through automated analysis used to
achieve the VERAFIED security mark and the additional coverage provided through
manual penetration testing to detect business logic and design errors to achieve the
VERAFIED HIGH ASSURANCE security mark for the 2011 CWE/SANS Top 25.

Directory VerAfied
Security
Mark

VerAfied
Methodology

CWE/SANS
TOP 25

OWASP TOP
10

Mobile App
Top 10

Contact Us Sign-in

Solutions Products Services Resources

About Blog

ENGLISH (US)

CWE/SANS Top 25 Testing | Veracode http://www.veracode.com/directory/CWE-SANS-TOP-25

1 of 7 8/26/15, 5:11 PM

Rank ID Insecure Interaction Between

Components

These weaknesses are related to

insecure ways in which data is sent and

received between separate components,

modules, programs, processes, threads,

or systems.

1 CWE-89 Improper Neutralization of Special

Elements used in an SQL Command

('SQL Injection')

X X

2 CWE-78 Improper Neutralization of Special

Elements used in an OS Command ('OS

Command Injection')

X X

4 CWE-79 Improper Neutralization of Input During

Web Page Generation ('Cross-site

Scripting')

X X

9 CWE-434 Unrestricted Upload of File with

Dangerous Type

X X

12 CWE-352 Cross-Site Request Forgery (CSRF) X

22 CWE-601 URL Redirection to Untrusted Site ('Open

Redirect')

X X

Rank ID Risky Resource Management

These weaknesses are related to

insecure ways in which data is sent and

received between separate components,

modules, programs, processes, threads,

or systems.

3 CWE-120 Buffer Copy without Checking Size of

Input ('Classic Buffer Overflow')

X X

13 CWE-22 Improper Limitation of a Pathname to a

Restricted Directory ('Path Traversal')

X X

CWE/SANS Top 25 Testing | Veracode http://www.veracode.com/directory/CWE-SANS-TOP-25

2 of 7 8/26/15, 5:11 PM

Products & Services Knowledgebase Articles CWE Coverage for Red Hat Customer Portal

Log in (https://access.redhat.com/login?redirectTo=https%3A%2F%2Faccess.redhat.com%2Farticles%2F171613) to add co

document.
�

� Updated February 18 2015 at 10:39 AM

CWE Coverage for Red Hat Customer
Portal

Present CWE coverage for Red Hat Customer Portal
Update 18th February 2015: This article has been updated to new revison 2.8_1 of the coverage,

which is now used for Red Hat Customer Portal.

Update 4th September 2014: This article has been updated to reflect that CWE list version 2.8

(updated from version 2.5) and a new revision of the coverage is now used for Red Hat Customer

Portal.

Update 12th August 2013: This article has been updated to reflect that CWE list version 2.5

(updated from version 2.4) and a new revision of the coverage is now used for Red Hat Customer

Portal.

Update 22nd March 2013: This article has been updated to make corrections to two of the entries

in the CWE list.

Update 28th February 2013: This article has been updated to reflect that CWE list version 2.4

(updated from version 2.3) is now used for Red Hat Customer Portal.

Update 27th November 2012: This article has been updated to reflect that CWE list version 2.3

(updated from version 2.2) is now used for Red Hat Customer Portal.

For the elements in the CWE coverage for Red Hat Customer Portal, we carefully selected

abstractions with enough relevant information for developers to detect and mitigate all its related

weaknesses.

CUSTOMER PORTAL

CWE Coverage for Red Hat Customer Portal - Red Hat Custom... https://access.redhat.com/articles/171613

1 of 9 8/26/15, 5:10 PM

CWE identifiers are assigned to Red Hat vulnerabilities using the present CWE coverage at the time

of the vulnerability assessment. Thus, references to vulnerabilities are divided into time slices based

upon the date the vulnerability was assessed and the present CWE coverage at that time.

The following is the present CWE coverage for Red Hat Customer Portal. It uses the CWE list version

2.8, is available in CSV format (http://people.redhat.com/~rdecarva/present_coverage.txt), and also

in HTML format (http://people.redhat.com/~rdecarva/present_coverage.html) emphasized in both

Development and Research views using the YUI TreeView Control for easier navigation and

reference.

 CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response

Splitting') (http://cwe.mitre.org/data/definitions/113)

 CWE-117: Improper Output Neutralization for Logs (http://cwe.mitre.org/data/definitions/117)

 CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

(http://cwe.mitre.org/data/definitions/119)

 CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

(http://cwe.mitre.org/data/definitions/120)

 CWE-121: Stack-based Buffer Overflow (http://cwe.mitre.org/data/definitions/121)

 CWE-122: Heap-based Buffer Overflow (http://cwe.mitre.org/data/definitions/122)

 CWE-125: Out-of-bounds Read (http://cwe.mitre.org/data/definitions/125)

 CWE-129: Improper Validation of Array Index (http://cwe.mitre.org/data/definitions/129)

 CWE-130: Improper Handling of Length Parameter Inconsistency (http://cwe.mitre.org

/data/definitions/130)

 CWE-131: Incorrect Calculation of Buffer Size (http://cwe.mitre.org/data/definitions/131)

 CWE-134: Uncontrolled Format String (http://cwe.mitre.org/data/definitions/134)

 CWE-135: Incorrect Calculation of Multi-Byte String Length (http://cwe.mitre.org

/data/definitions/135)

 CWE-138: Improper Neutralization of Special Elements (http://cwe.mitre.org

/data/definitions/138)

 CWE-14: Compiler Removal of Code to Clear Buffers (http://cwe.mitre.org/data/definitions/14)

 CWE-170: Improper Null Termination (http://cwe.mitre.org/data/definitions/170)

 CWE-172: Encoding Error (http://cwe.mitre.org/data/definitions/172)

 CWE-179: Incorrect Behavior Order: Early Validation (http://cwe.mitre.org/data/definitions/179)

 CWE-184: Incomplete Blacklist (http://cwe.mitre.org/data/definitions/184)

 CWE-185: Incorrect Regular Expression (http://cwe.mitre.org/data/definitions/185)

 CWE-190: Integer Overflow or Wraparound (http://cwe.mitre.org/data/definitions/190)

 CWE-193: Off-by-one Error (http://cwe.mitre.org/data/definitions/193)

 CWE-194: Unexpected Sign Extension (http://cwe.mitre.org/data/definitions/194)

CWE Coverage for Red Hat Customer Portal - Red Hat Custom... https://access.redhat.com/articles/171613

2 of 9 8/26/15, 5:10 PM

Assurance & the Systems Dev.
Life-Cycle

Cyber
Threat/
Attack
Analysis

Abuse Case
Development

Attack Analysis against
Supply Chain &
Application Architecture
Security Review

Application Security Code
Review, Penetration Testing &
Abuse Case Driven Testing of
Maintenance Updates

Application Security Code
Review (developed and
purchased), Penetration
Testing & Abuse Case
Driven Testing

and Systems
Design

* Ideally Insert SwA before RFP release in Analysis of Alternatives

Attack-based
Application Design
Security Review

Gather All of the
Evidence for the
Assurance Case and
Get It Approved

Static
Code

Analysis

Penetration
Test

Data
Security
Analysis

Code
Review

Architecture
Risk

Analysis

Cross-Site Scripting (XSS) X X X
SQL Injection X X X

Insufficient Authorization Controls X X X X
Broken Authentication and Session Management X X X X

Information Leakage X X X
Improper Error Handling X

Insecure Use of Cryptography X X X
Cross Site Request Forgery (CSRF) X X

Denial of Service X X X X
Poor Coding Practices X X

  Different assessment methods are effective at finding
different types of weaknesses

  Some are good at finding the cause and some at finding the
effect

Detection Methods – updated with SOAR

© 2015 Synopsys, Inc. 36

If I Had A Wish

• Automated toolsets that figure this out through a well defined
workflow.
– I know it is a lofty goal, but thinking big is what drives progress.
– Today what we can do is capture good data and apply some wisdom in a

manual manner.
•  If I had one more wish, I would probably wish for time travel, because

it just seems cool.

Static
Analysis

Malformed
Input Testing

Dynamic
Runtime
Analysis

Known
Malware
Analysis

Penetration
Testing

Questions?

Mike Ahmadi
mike@codenomicon.com

Bob Martin

ramartin@mitre.org

